SD117c

Blaenau Gwent County Borough Council Lower Plateau, Six Bells Colliery Site Stage 3 Strategic Flood Consequence Assessment

Final February 2011

Prepared for

Revision Schedule

Lower Plateau, Six Bells Colliery Site Stage 3 SFCA February 2011

Rev	Date	Details	Prepared by	Reviewed by	Approved by
01	February 2011	D129363 - Draft for comment	Patrick Goodey Flood Risk Consultant	Jon Robinson Technical Director	Jon Robinson Technical Director
01	February 2011	D129363 – Final incorporating comments	Patrick Goodey Flood Risk Consultant	Jon Robinson Technical Director	Jon Robinson Technical Director

This document has been prepared in accordance with the scope of Scott Wilson's

URS/Scott Wilson The Crescent Centre Temple Back Bristol BS1 6EZ

Tel: 0117 917 1230 Fax: 0117 930 0342

Table of Contents

1	Introduction	1
1.1	Commission	1
1.2	Background	1
2	Site Location and Description	2
2.1	Location	2
2.2	Layout and Topography	2
3	Methodology and Data	4
3.1	Culvert Capacity Estimation	4
4	Results and Discussion	
4.1	Culvert Capacity – Results of the Manning's Equation	6
4.2	Discussion	6
4.3		

1 Introduction

1.1 Commission

URS/Scott Wilson was commissioned by Blaenau Gwent County Borough Council (CBC) to undertake a Stage 3 Strategic Flood Consequences Assessment (SFCA) for the Lower Plateau site at Six Bells, Abertillery. The site reference within the emerging Local Development Plan (LDP) is D11.

1.2 Background

Following completion of the Stage 2 SFCA, discussion with the Environment Agency Wales (see Appendix A) has identified the potential requirement for a Stage 3 SFCA to be undertaken for site D11 at Six Bells, Abertillery. The site is proposed within the LDP to be allocated for non-resident education use.

The Environment Agency Flood Mapping indicates that the site is predominantly located within Flood Zone 3 (1% annual probability of flooding) and 2 (between a 1% and 0.1% annual probability of flooding), associated with the Ebbw Fach River. The Welsh Assembly Government (WAG) Development Advice Map (DAM) indicates that the site is predominantly located in Zone C2 (Undefended, with a 0.1% annual probability of flooding). However, the Ebbw Fach River flows within a large culvert beneath the western boundary of the site. Prior to undertaking hydraulic modelling, it was agreed that an assessment of the culvert capacity

2 Site Location and Description

2.1 Location

The Lower Plateau, Six Bells site is located within the town of Abertillery, Blaenau Gwent on the site of the former Six Bells Colliery. The approximate NGR for the site is SO 220 029. The site is bordered to the north by Chapel Road and the Six Bells Baptist Church. To the east of the site are existing residential properties. The western boundary of the site is defined by sloping ground that rises up to Six Bells Road. To the south of the site is existing open space, also associated with the colliery. As

The results from the Manning's Equation are provided in Section 4 below.

3.1.1 Hydrological Flows

In order to estimate the likely flow range within the Ebbw Fach River at Six Bells, a hydrological estimation has been completed using the industry standard Flood Estimation Handbook (FEH) statistical analysis approach. Details of the methodology used to generate the flow estimates are provided in the Hydrological Analysis Report, included in Appendix B of this report. **Table 1** below provides a summary of the various flow estimations.

Table 1 Estimated flows within the Ebbw Fach River for various design return period events, obtained from the Hydrological Analysis Report, provided in Appendix B.

	Return Period	
Annual Probability	(1 in x years)	Flow estimate (m3/s)

4 Results and Discussion

4.1 Culvert Capacity – Results of the Manning's Equation

The results of the Manning's Equation culvert capacity estimation are provided in Table 2 below. These represent the likely capacity at various points along the culvert.

Table 2 Estimated capacity of the culvert at various locations along the culvert length

	Dimen	Capacity estimate	
Chainage (m)	Height from Invert to Soffit (m)	Width (m)	(m3/s)
0	3.82	5.12	78.2
40	3.85	5.10	78.7
60	3.78	5.15	77.7
80	3.00	3.70	34.0

4.2 Discussion

The use of the Manning's equation to generate culvert capacity estimates is a simplistic method and has been used as a first pass at this stage to provide an indication of likely capacity only.

Comparing the results in Table 2 above indicates that for over 60m of the culvert (approximately half of the total length), it is able to convey flows generated from an event of between 0.5% and 0.1% annual probability (1 in 200 and 1 in 1000 year return period). However, the downstream extent of the culvert would only be able to convey flows generated during an event of between a 4% and 2% annual probability (1 in 25 and 1 in 50 year return period). As a result, it is likely that during an event which exceeds the magnitude of the 4% annual probability, the capacity of the downstream extent of the culvert would become exceeded. At the 1% annual probability (1 in 100 year return period), it is likely that significant constriction of flows could occur.

At this outline stage and without full hydraulic modelling, it is not possible to fully conclude whether or not such constriction of flows would cause flooding to the proposed site or surrounding area. However, the topography of the area results in a high headwall above the culvert entrance, meaning any water exceeding the culvert capacity would back up rather than spill over ground in a downstream direction. In addition, the site is located at a higher topographical level than the land to the north (e.g. Chapel Road and Upper Griffin Street). Therefore, this would provide a preferential flow route for any flooding resulting from culvert exceedance. However, during high flows (i.e. bankfull), it is likely that the Chapel Road bridge could present an obstruction to the flow of water, thus potentially reducing the flow of water entering the culvert beneath the site and hence lessening the risk of a capacity exceedance.

As a result of this outline assessment, whilst the flood risk posed to the proposed site remain relatively unknown, it is believed that the risk of flooding to the site following a culvert capacity exceedance may be relatively low. It is therefore very likely that the WAG DAMs and Environment Agency Flood Zone maps at the site are likely to be exaggerated on account of them not taking into consideration the culvert beneath the site.

4.3 Recommendations

As a result of the above it is recommended that a hydraulic modelling study should be undertaken to determine whether the current flood risk mapping available can be revised and the site can then be allocated within the LDP. The study undertaken to date suggests that such modelling will support allocation. This hydraulic modelling would investigate the likelihood of the culvert becoming exceeded, along with the likely flow routes of any flooding. The FCA arising from the work would also recommend any mitigation measures required to minimise the impact of flooding at the site, if necessary.

5 Conclusions

Χ

Appendix A – Environment Agency Correspondence

```
E c / c : / 00 /10 / -
                                          0 / 1- 01
Ec c y :
ļη
                                          D i /D →: 1
                                                                              010
1
                С
                                      ci ÷gc F C → → c→
В≎
                        В
                               g C
                 g ≥ 2
                        L
                                                           'IJ IJ
ħ
               010
                               \mathbf{I}_{1} ,
                                                010 (
                                                          )
 Iη
                       Ιη
 ≎¢ i
          1 I
                    Çi
                                  1
                                                               ļη
        Ιη
                                                . L<sub>1</sub> L<sub>1</sub>
{\rm I\hspace{-.1em}I}_1
                      ļη
         2
 ≎¢ i
                           .1.
                                                .1.1
                                                                              ļη
           .1.1
           .1.1,
                                                                     ļη
          \mathbf{I}_{1} /
                          1
  Lη
```

```
J
l<sub>1</sub> l<sub>1</sub>
                                                              ļη
Section . V
. .1).
                                                                                    ļη
                                      Iη
Lη
Section . North Rising Sun Industrial Estate
  J<sub>1</sub>
                                Լ, Լ
  L<sub>1</sub>
Section . Lower Plateau, Six Bells Colliery
Ļ
Ih
                                                                                         Ļ
 ≎Ç i
           5
    / .. <sup>k</sup>h 11.1
                                             Ιη
```


Appendix B – Hydrological Analysis Report

Blaenau Gwent County Borough Council

L÷ P ⇒ ,i B Ci⇒ i ⇒ H gc A i ₹

Final February 2011

Revision Schedule

L: ▶ : ,i B Ci: i: g3 FCA

This document has been prepared in accordance with the scope of Scott Wilson's appointment with its client and is subject to the terms of that appointment. It is addressed to and for the sole and confidential use and reliance of Scott Wilson's client. Scott Wilson accepts no liability for any use of this document other than by its client and only for the purposes for which it was prepared and provided. No person other than the client may copy (in whole or in part) use or rely on the contents of this document, without the prior written permission of the Company Secretary of Scott Wilson Ltd. Any advice, opinions, or recommendations within this document should be read and relied upon only in the context of the document as a whole. The contents of this document do not provide legal or tax advice or opinion.

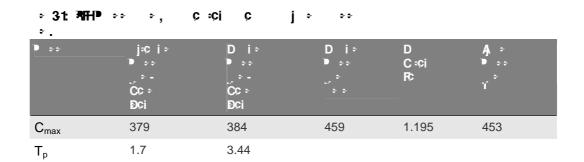
♥¢ iThe Crescent Centre
Temple Back
Bristol
BS1 6EZ

Tel: 0117 917 1230 Fax: 0117 930 0342

.-c i c

Table of Contents

1	l çi1	
1.1	Commission	1
1.2	Background	1
2	HEH iic ⇒2	
2.1	Methodology	2
3	वा -	
3.1	Methodology	4
4	३ → i6	
4.1	Summary of results and discussion	
4.2	Recommendation	6
5	₹÷÷ Ç-	
A∍i	A FEH i i¢ ⇒ C¢ i ⇒A	
A∻i	B ₹#HC¢ i ⇔B	



3 **4**

3.1 Methodology

The following sources of data and software were used for the ReFH analysis:

· FEH CD-ROM v3

4 **३** ⇒ i

4.1 Summary of results and discussion

Table 4-1 provides a comparison of the GCFs and flow estimates derived using the methods

Ari A REHiic . Oci

Spreadsheet Version 1.0

Technical Reviewer Name

FEH CD-ROM Version	3			
Easting Area	322050 30.27	Northing	203050	
Catchment Centroid				
Easting	320782	Northing	207693	
FARL	0.958	RMED-1H	11.4	
PROPWET	0.54	RMED-1D	52.2	
ALTBAR	391	RMED-2D	68.1	
ASPBAR	225	URBCONC1990	0.627	
ASPVAR	0.2	URBEXT1990	0.0604	
BFIHOST	0.531	URBLOC1990	0.998	
DPLBAR	6.34	URBCONC2000	0.707	
DPSBAR	212.4	URBEXT2000	0.0759	
LDP	14.57	URBLOC2000	0.888	
SAAR	1463	FPEXT	0.0395	
SAAR4170	1543	FPDBAR	1.404	
SPRHOST	31.08	FPLOC	1.249	
С	-0.02615	C(1km)	-0.026	
D1	0.46856	D1(1km)	0.482	
D2	0.42887	D2(1km)	0.468	
D3	0.36249	D3(1km)	0.337	
E	0.28569	E(1km)	0.282	
F	2.52452	F(1km)	2.525	
Notes				
Is the catchment small	(< 5 km ²)?		NO	
	Is the catchment permeable (SPRHOST < 20)?			
Is the catchment urbani	,	,	NO	
is the catominent urban	SCG (ONDEXT > 0.0	, .		

Station	Distance	Years of data	QMED AM	L-CV	L-SKEW	Discordancy
48004 (Warleggan @ Trengoffe)	0.288	39	9.565	0.244	0.207	0.86
72007 (Brock @ U/s a6)	0.343	30	29.438	0.194	0.273	2.033
48001 (Fowey @ Trekeivesteps)	0.372	39	16.858	0.22	0.3	0.276
48009 (st Neot @ Craigshill Wood)	0.464	12	8.469	0.246	0.372	1.5
25012 (Harwood Beck @ Harwood)	0.467	39	31.368	0.176	0.264	1.003
76811 (Dacre Beck @ Dacre Bridge)	0.48	6	34.576	0.25	0.345	2.245
48010 (Seaton @ Trebrownbridge)	0.496	36	6.47	0.236	0.254	0.783
47009 (Tiddy @ Tideford)	0.507	39	5.916	0.175	0.133	0.636
48803 (Carnon @ Bissoe)	0.534	14	5.307	0.247	0.161	1.645
27032 (Hebden Beck @ Hebden)	0.543	42	3.91	0.222	0.267	0.286
21017 (Ettrick Water @ Brockhot0n)						

FEH Technical Review Sheets: QMED CDs for Subject Site

Spreadsheet Version 1.0

Project Details	
Project Number	D129363
Project Name	Blaenau Gwent SFCA
Catchment Name	Ebbw Fach River @ Six Bells, Abertillery
User Name	Rob Sweet
Technical Reviewer Name	Peter Mansell

AREA	30.27
FARL	0.958
BFIHOST	0.531
SAAR	1463
SPRHOST	31.08
URBEXT ₂₀₀₀	0.0777

Calculation of rural QMED

QMED rural = 15.22

This is the revised Qmed Equation based on Science Report: SC050050 - Improving the FEH statistical procedures for flood frequency estimation. This can be accessed at:

http://publications.environment-agency.gov.uk/pdf/SCHO0608BOFF-e-e.pdf

Calculation of urban adjusted QMED applicable if catchment is urban (URBEXT2000 > 0.03).

```
QMED =UAF x QMED rural where UAF = (1+URBEXT)^{0.37}PRUAF<sup>2.16</sup> and PRUAF = 1+0.47URBEXT<sub>2000</sub>((70/SPRHOST)-1)
```

PRUAF = 1.046 UAF = 1.132 QMED = 17.232

To reflect URBEXT $_{2000}$ values, the UAF equation has been updated using guidance provided in report FD1919 - URBEXT $_{2000}$ A New FEH catchment descriptor and Kjeldsen, T.R. 2010 'Modelling the impact of urbanisation on flood frequency relationships in the UK', Hydrology Research, 41(5), 391-405.

As per WINFAP-FEH v3 User Guide, the use of Data Transfer methods to improve the estimate of QMED is not recommended where the catchment is urbanised (i.e. URBEXT $_{2000} > 0.03$).

A∻iB ₹#HO≎i :

Spreadsheet application report

Jser name

D

Spreadsheet application report

 $T_{\rm p}$ derived from catchment descriptors, with a user defined donor correction factor of 1.049 applied ReFH design standard used for $U_{\rm p}$

 $ReFH\ design\ standard\ used\ for\ U_{kd47\ Tm76-11(c)-11(f)-8(f)9(p)2(f)1(o)2(f)-8(s)-11(,)1(1)(w)19(f)9(f)1(h)2()1(a)2(,)-11(e)2(f)6()1(53.7595.7_{-0})T_{J}/Tm7699e(c)T07\ i)9(e)7_{-0}$

ReFH design6ttandard uRU

ReFH design26tandard ufor U

Spreadsheet application report

User name	Dr Rob Sweet	Catchment name	Ebbw Fa	ch River	Date/time	e modelled	28-Jan-2011 10:22	
Company name	URS/Scott Wilson	Catchment easting	32205	50	Version		1.3	
Project name	Blaenau Gwent - Six Bells	Catchment northing	20305	50				
		Catchment area	30.2	27				
Summary of model setup								
Design rainfall parameters		Loss model parameters		Routing mode	el parameters	Baseflow mo	odel parameters	
Return period (yr)	10	C _{max} (mm)	453	T _p (hr)	1.76	BL (hr)	54	.2
Duration (hr)	4 25	Co.: (mm)	168	H.	0.65	BR87 0 0	1 228 3599 692 4807 1	[m [/(1)2()-881Tf () 9

Spreadsheet application report

 $T_{\rm p}$ derived from catchment descriptors, with a user defined donor correction factor of 1.049 applied ReFH design standard used for $U_{\rm p}$

 $ReFH\ design\ standard\ used\ for\ U_{kd47\ Tm76-11(c)-11(f)-8(f)9(p)2(f)1(o)2(f)-8(s)-11(,)1(1)(w)19(f)9(f)1(h)2()1(a)2(,)-11(e)2(f)6()1(53.7595.7_{-0})T_{J}/Tm7699e(c)T07\ i)9(e)7_{-0}$

ReFH design6ttandard uRU

ReFH design26tandard ufor U

Spreadsheet application report

User name	Dr Rob Sweet	Catchment name	Ebbw Fach	n River	Date/time mo	delled	28-Jan-2011 10	:22
Company name	URS/Scott Wilson	Catchment easting	322050		Version		1.3	
Project name	Blaenau Gwent - Six Bells	Catchment northing Catchment area	203050 30.27					
Summary of model setup		Catchinient area	30.27					
Design rainfall parameters		Loss model parameters		Routing model paramete	rs	Baseflow mode	el parameters	
Return period (yr)	20	C _{max} (mm)	453	T _p (hr) 1.76	5	BL (hr)		54.2
Duration (hr)	4.25	C _{ini} (mm)	168	U _p 0.65	;	BR		1.92
Timestep (hr)	0.25	a						

Spreadsheet application report

 $T_{\rm p}$ derived from catchment descriptors, with a user defined donor correction factor of 1.049 applied ReFH design standard used for $U_{\rm p}$

 $ReFH\ design\ standard\ used\ for\ U_{kd47\ Tm76-11(c)-11(f)-8(f)9(p)2(f)1(o)2(f)-8(s)-11(,)1(1)(w)19(f)9(f)1(h)2()1(a)2(,)-11(e)2(f)6()1(53.7595.7_{-0})T_{J}/Tm7699e(c)T07\ i)9(e)7_{-0}$

ReFH design6ttandard uRU

Spreadsheet application report

 $T_{\rm p}$ derived from catchment descriptors, with a user defined donor correction factor of 1.049 applied ReFH design standard used for $U_{\rm p}$

 $ReFH\ design\ standard\ used\ for\ U_{kd47\ Tm76-11(c)-11(f)-8(f)9(p)2(f)1(o)2(f)-8(s)-11(,)1(1)(w)19(f)9(f)1(h)2()1(a)2(,)-11(e)2(f)6()1(53.7595.7_{-0})T_{J}/Tm7699e(c)T07\ i)9(e)7_{-0}$

ReFH design6ttandard uRU

User name Company name Project name Summary of model setup	Dr Rob Sweet URS/Scott Wilson Blaenau Gwent - Six Bells	Catchment name Catchment easting Catchment northing Catchment area	3220	50	Date/time n Version	nodelled	28-Jan-2011 10 1.3):24
Design rainfall parameters		Loss model parameters	;	Routing model pa	arameters	Baseflow mod	lel parameters	
Return period (yr)	50	C _{max} (mm)	453	T _p (hr)	1.76	BL (hr)		54.2
Duration (hr)	4.25	C _{ini} (mm)	168	Up	0.65	BR		1.92
Timestep (hr)	0.25	a factor	0.88	U _k	0.8	$BF_0 (m^3/s)$		3.4
Season	Winter							
Summary of results								
FEH DDF rainfall (mm)	64.7	Peak rainfall (mm)	7	.6				
Design rainfall (mm)	50	Peak flow (m ³ /s)	48	.3				
Paculte			Granh					

Results								Graph
Series	Design Rainfall	Net rainfall	Direct		Baseflow	Total		
Unit	mm	mm		m ³ /s	m³/s		m³/s	
0.00	0.6		0.2	0.0		3.4	3.4	
0.25	0.9		0.3	0.0)	3.3	3.4	
0.50	1.3		0.4	0.2	2	3.3	3.5	
0.75	1.7		0.6	0.5		3.3	3.8	
1.00	2.4		8.0	1.0)	3.3	4.4	
1.25	3.4		1.2	1.9		3.3	5.2	
1.50	4.6		1.6	3.2	2	3.3	6.5	
1.75	6.3		2.3	5.1		3.3	8.4	
2.00	7.6		2.9	7.		3.4	11.1	
2.25	6.3		2.5	11.4		3.4	14.8	
2.50	4.6		1.9	16.0		3.6	19.5	
2.75	3.4		1.4	21.2		3.7	24.9	
3.00	2.4		1.0	26.6		3.9	30.5	
3.25	1.7		0.7	31.9		4.1	36.0	
3.50	1.3		0.5	36.6		4.4	41.0	
3.75	0.9		0.4	40.3		4.7	45.0	
4.00	0.6		0.3	42.4		5.1	47.5	
4.25	0.0		0.0	42.8		5.4	48.3	
4.50	0.0		0.0	41.9		5.8	47.7	
4.75	0.0		0.0	39.9		6.1	46.0	
5.00	0.0		0.0	37.		6.4	43.5	
5.25	0.0		0.0	33.9		6.7	40.7	
5.50	0.0		0.0	30.6		7.0	37.6	
5.75	0.0		0.0	27.3		7.2	34.5	
6.00	0.0		0.0	24.1		7.4	31.5	
6.25	0.0		0.0	21.1		7.6	28.7	
6.50	0.0		0.0	18.4		7.7	26.1	
6.75	0.0		0.0	15.9		7.8	23.7	
7.00	0.0		0.0	13.6		7.9	21.5	
7.25	0.0		0.0	11.4		8.0	19.3	
7.50	0.0		0.0	9.3		8.0	17.3	
7.75	0.0		0.0	7.4		8.1	15.5	
8.00	0.0		0.0	5.7		8.1	13.8	
8.25	0.0		0.0	4.1		8.1	12.2	
8.50	0.0		0.0	2.9		8.1	11.0	
8.75	0.0		0.0	1.9		8.1	10.0	
9.00	0.0		0.0	1.2		8.1	9.3	
9.25	0.0		0.0	0.8		8.0	8.8	
9.50	0.0		0.0	0.4		8.0	8.4	
9.75	0.0		0.0	0.2		8.0	8.2	
10.00	0.0		0.0	0.1	I	7.9	8.0	
10.25	0.0		0.0					

Spreadsheet application report

 $T_{\rm p}$ derived from catchment descriptors, with a user defined donor correction factor of 1.049 applied ReFH design standard used for $U_{\rm p}$

 $ReFH\ design\ standard\ used\ for\ U_{kd47\ Tm76-11(c)-11(f)-8(f)9(p)2(f)1(o)2(f)-8(s)-11(,)1(1)(w)19(f)9(f)1(h)2()1(a)2(,)-11(e)2(f)6()1(53.7595.7_{-0})T_{J}/Tm7699e(c)T07\ i)9(e)7_{-0}$

ReFH design6ttandard uRU

User name	Dr Rob Sweet	Catchment name	Ebbw Fa	ch River	Date/time n	nodelled	28-Jan-2011 10):24
Company name	URS/Scott Wilson	Catchment easting	32205	0	Version		1.3	
Project name	Blaenau Gwent - Six Bells	s Catchment northing	20305	0				
-		Catchment area	30.2	7				
Summary of model setup								
Design rainfall parameters		Loss model parameters	8	Routing model pa	arameters	Baseflow mo	odel parameters	
Return period (yr)	75	C _{max} (mm)	453	T _p (hr)	1.76	BL (hr)		54.2
Duration (hr)	4.25	C _{ini} (mm)	168	Up	0.65	BR		1.92
Timestep (hr)	0.25	a factor	0.85	U _k	0.8	BF ₀ (m ³ /s))	3.4
Season	Winter			- K		_ ((((, ())		
0003011	Wille							
Summary of results								
FEH DDF rainfall (mm)	71.6	Peak rainfall (mm)	8.	4				
Design rainfall (mm)	55.4	Peak flow (m 3/s)	52.	6				
Results			Graph					
Series Design Rainfall		Baseflow Total flow						
Unit mm	mm m³/s	m³/s m³						
0.00 0.			3.4					
0.25 1.			3.4					

Results							Graph
Series	Design Rainfall	Net rainfall	Direct runoff	Baseflow	Total f		
Unit	mm	mm	m³/s	m ³ /s		m³/s	
0.00	0.7	. (0.2	0.0	3.4	3.4	
0.25	1.0	(0.3	0.0	3.3	3.4	
0.50	1.4	. (0.4	0.2	3.3	3.5	
0.75	1.9	(0.6	0.6	3.3	3.9	
1.00	2.7).9	1.1	3.3	4.4	
1.25	3.7		1.2	2.0	3.3	5.3	
1.50	5.1		1.8	3.4	3.3	6.7	
1.75	6.9		2.5	5.5	3.3	8.8	
2.00	8.4		3.2	8.4	3.4	11.7	
2.25	6.9			2.3	3.5	15.8	
2.50	5.1			7.3	3.6	20.9	
2.75	3.7			23.0	3.7	26.7	
3.00	2.7			29.0	4.0	32.9	
3.25	1.9			34.8	4.2	39.0	
3.50	1.4			0.0	4.5	44.5	
3.75	1.0			14.1	4.9	48.9	
4.00	0.7			16.4	5.3	51.7	
4.25	0.0			17.0	5.6	52.6	
4.50	0.0			16.0	6.0	52.0	
4.75	0.0			13.8	6.4	50.2	
5.00	0.0			8.04	6.7	47.5	
5.25	0.0			37.3	7.1	44.4	
5.50	0.0			33.6	7.3	41.0	
5.75	0.0	(30.0	7.6	37.6	
6.00	0.0			26.5	7.8	34.3	
6.25	0.0			23.3	8.0	31.2	
6.50	0.0			20.3	8.1	28.4	
6.75	0.0			7.5	8.3	25.8	
7.00	0.0			4.9	8.4	23.3	
7.25	0.0			2.5	8.5	21.0	
7.50	0.0			0.3	8.5	18.8	
7.75	0.0		0.0	8.2	8.6	16.7	
8.00	0.0		0.0	6.3	8.6	14.9	
8.25	0.0		0.0	4.6	8.6	13.2	
8.50	0.0		0.0	3.2	8.6	11.8	
8.75	0.0		0.0	2.1	8.6	10.7	
9.00	0.0		0.0	1.4	8.6	9.9	
9.25	0.0		0.0	8.0	8.5	9.4	
9.50	0.0		0.0	0.5	8.5	9.0	
9.75	0.0		0.0	0.3	8.5	8.7	
10.00	0.0		0.0	0.1	8.4	8.5	
10.25	0.0		0.0	0.0	8.4	8.4	
10.50	0.0	(0.0	0.0	8.3	8.3	
Total (mm)0.0	0.1000						

Spreadsheet application report

 $T_{\rm p}$ derived from catchment descriptors, with a user defined donor correction factor of 1.049 applied ReFH design standard used for $U_{\rm p}$

 $ReFH\ design\ standard\ used\ for\ U_{kd47\ Tm76-11(c)-11(f)-8(f)9(p)2(f)1(o)2(f)-8(s)-11(,)1(1)(w)19(f)9(f)1(h)2()1(a)2(,)-11(e)2(f)6()1(53.7595.7_{-0})T_{J}/Tm7699e(c)T07\ i)9(e)7_{-0}$

ReFH design6ttandard uRU

Spreadsheet application report

 $T_{\rm p}$ derived from catchment descriptors, with a user defined donor correction factor of 1.049 applied ReFH design standard used for $U_{\rm p}$

 $ReFH\ design\ standard\ used\ for\ U_{kd47\ Tm76-11(c)-11(f)-8(f)9(p)2(f)1(o)2(f)-8(s)-11(,)1(1)(w)19(f)9(f)1(h)2()1(a)2(,)-11(e)2(f)6()1(53.7595.7_{-0})T_{J}/Tm7699e(c)T07\ i)9(e)7_{-0}$

ReFH design6ttandard uRU

User name Company name Project name	Dr Rob Sweet URS/Scott Wilson Blaenau00000000000000000000000000000000000	Catchment name Catchment easting)	Date/time Version	modelled	28-Jan-2011 1.3	10:25
•		Catchment area	30.2	7				
Summary of model setup								
Design rainfall parameters		Loss model parameters	3	Routing model	parameters	Baseflow me	odel parameters	
Return period (yr)	200	C _{max} (mm)	453	T _p (hr)	1.76	BL (hr)		54.2
Duration (hr)	4.25	C _{ini} (mm)	168	U_p	0.65	BR		1.92
Timestep (hr)	0.25							

Spreadsheet application report

 $T_{\rm p}$ derived from catchment descriptors, with a user defined donor correction factor of 1.049 applied ReFH design standard used for $U_{\rm p}$

 $ReFH\ design\ standard\ used\ for\ U_{kd47\ Tm76-11(c)-11(f)-8(f)9(p)2(f)1(o)2(f)-8(s)-11(,)1(1)(w)19(f)9(f)1(h)2()1(a)2(,)-11(e)2(f)6()1(53.7595.7_{-0})T_{J}/Tm7699e(c)T07\ i)9(e)7_{-0}$

ReFH design6ttandard uRU

Spreadsheet application report

User name Dr Rob Sweet Catchment name Ebbw Fach River Date/time modelled 28-Jan-2011 10:25 Company name

Spreadsheet application report

 $T_{\rm p}$ derived from catchment descriptors, with a user defined donor correction factor of 1.049 applied ReFH design standard used for $U_{\rm p}$

 $ReFH\ design\ standard\ used\ for\ U_{kd47\ Tm76-11(c)-11(f)-8(f)9(p)2(f)1(o)2(f)-8(s)-11(,)1(1)(w)19(f)9(f)1(h)2()1(a)2(,)-11(e)2(f)6()1(53.7595.7_{-0})T_{J}/Tm7699e(c)T07\ i)9(e)7_{-0}$

ReFH design6ttandard uRU

Spreadsheet application report

 $T_{\rm p}$ derived from catchment descriptors, with a user defined donor correction factor of 1.049 applied ReFH design standard used for $U_{\rm p}$

 $ReFH\ design\ standard\ used\ for\ U_{kd47\ Tm76-11(c)-11(f)-8(f)9(p)2(f)1(o)2(f)-8(s)-11(,)1(1)(w)19(f)9(f)1(h)2()1(a)2(,)-11(e)2(f)6()1(53.7595.7_{-0})T_{J}/Tm7699e(c)T07\ i)9(e)7_{-0}$

ReFH design6ttandard uRU

Spreadsheet application report

 $T_{\rm p}$ derived from catchment descriptors, with a user defined donor correction factor of 1.049 applied ReFH design standard used for $U_{\rm p}$

 $ReFH\ design\ standard\ used\ for\ U_{kd47\ Tm76-11(c)-11(f)-8(f)9(p)2(f)1(o)2(f)-8(s)-11(,)1(1)(w)19(f)9(f)1(h)2()1(a)2(,)-11(e)2(f)6()1(53.7595.7_{-0})T_{J}/Tm7699e(c)T07\ i)9(e)7_{-0}$

ReFH design6ttandard uRU

Appendix C – Derivation of Values used in the Manning's Equation

Estimation of Culvert Area

In order to estimate the culvert area, wetted perimeter and hydraulic radius, the culvert parameters as provided in the Structural Inspection Report were utilised. This represents the best available data to undertake such measurements. Only one dimension measurement was provided for both the height (from invert to soffit at the arch high point) and width of the culvert. Therefore, establishing accurate dimensions of the culvert arch is not possible. As a result, the

Estimation of Manning's 'n' Value

The Manning's 'n' value represents the roughness and therefore friction forces acting upon water flowing through the culvert. The Manning's 'n' values have been derived using standard tables provided by Chow, 1959^2